Ibrutinib Plus Venetoclax in Relapsed, Refractory CLL: Updated results of the Bloodwise TAP CLARITY Study

Talha Munir, Andy Rawstron, Kristian Brock, Samuel Muñoz-Vicente, Francesca Yates, Rebecca Bishop, Donald MacDonald, Christopher Fegan, Alison McCaig, Anna Schuh, Andrew Pettitt, John G. Gribben, Piers Patten, Stephen Devereux, Adrian Bloor, Christopher P. Fox, Francesco Forconi, Peter Hillmen
Study End-Points

Primary end-point:
- Minimal Residual Disease (MRD) eradication (<0.01% CLL cells) in the marrow after 12 months of IBR+VEN.

Secondary end-points:
- MRD eradication (<0.01% CLL cells) in the marrow after 6 & 24 months of IBR+VEN
- Response rate, Progression-free survival (PFS) and Overall survival (OS)
- Toxicity of combination therapy (AE’s and SAE’s)

Key Exploratory end-points:
- Phosphoprotein and Bcl-2 protein expression.
- Investigation of the apoptotic pathway
- Depletion of MRD below 10^{-5} and 10^{-6} using high sensitivity flow cytometry and HTS

Key Entry Criteria

Key Inclusion Criteria:
- CLL requiring therapy according to IWCLL criteria
- Refractory/relapsed CLL defined as any of the following:
 - Patients with CLL with 17p del after at least one previous therapy.
- ECOG performance status (PS) of 0, 1, or 2
- Adequate bone marrow function (Plt >75; Neut >1.0) unless due to marrow involvement

Key Exclusion Criteria:
- Richter’s transformation or CNS involvement by CLL
- Previous treatment with ibrutinib, venetoclax or an alternative Btk or Bcl-2 inhibitor
- Active autoimmune haemolysis or immune mediated thrombocytopenia
Treatment Schedule and Stopping Rules

Stopping rules: Duration of therapy is double time to MRD4 negative

1) MRD negative (<0.01%) at M8 stop I+V at M14
2) MRD negative (<0.01%) at M14 or M26 stop I+V at M26
3) MRD positive (≥0.01%) at M26 continue ibrutinib monotherapy
Patient characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Patients (n = 54)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender (Male/Female)</td>
<td>37 (69%) / 17 (31%)</td>
</tr>
<tr>
<td>Age (Median [Range])</td>
<td>64 (31 – 83)</td>
</tr>
<tr>
<td>Current Binet Stage (A / B / C / NK)</td>
<td>12 (22%) / 18 (33%) / 22 (41%) / 2 (4%)</td>
</tr>
<tr>
<td>Lymph nodes (“bulky” ≥ 5cm)</td>
<td>4 (8%)</td>
</tr>
<tr>
<td>ECOG (0/1/2/NK)</td>
<td>32 (59%) / 18 (33%) / 3 (6%) / 1 (2%)</td>
</tr>
<tr>
<td>VH (mutated/unmutated/VH3-21/failed)</td>
<td>10 (19%) / 40 (74%) / 3 (6%) / 1 (2%)</td>
</tr>
<tr>
<td>17p del</td>
<td>10/50 (20%)</td>
</tr>
<tr>
<td>11q del (not 17p del)</td>
<td>13/51 (25%)</td>
</tr>
<tr>
<td>Prior therapies (median [range])</td>
<td>1 (1 to 6)</td>
</tr>
<tr>
<td>• previous FCR or BR</td>
<td>44/54 (82%)</td>
</tr>
<tr>
<td>• relapse within 3 years of BR or FCR</td>
<td>22/44 (50%)</td>
</tr>
<tr>
<td>• previous idelalisib</td>
<td>11/54 (20%)</td>
</tr>
</tbody>
</table>

- 4 patients stopped ibrutinib before adding venetoclax due to toxicity
- 50 patients recruited to combination part of trial
- 50 patients successfully passed through venetoclax escalation phase

Toxicity category/event

<table>
<thead>
<tr>
<th>Study Patient number</th>
<th>Toxicity category/event</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Infections and infestations</td>
</tr>
<tr>
<td>25</td>
<td>Brain abscess</td>
</tr>
<tr>
<td>34</td>
<td>Vascular disorder</td>
</tr>
<tr>
<td>50</td>
<td>Gastrointestinal disorder, renal disorder, general disorder, injury</td>
</tr>
</tbody>
</table>

Date of data lock: 05 September 2019
Primary end-point: undetectable MRD\(_4\) (<0.01%) in BM after 12 months I+V

<table>
<thead>
<tr>
<th>All at Month 14</th>
<th>PB MRD negative</th>
<th>BM MRD negative</th>
<th>Trephine normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients</td>
<td>29/50 (58%)</td>
<td>20/50 (40%)</td>
<td>39/48 (81%)</td>
</tr>
<tr>
<td>FCR/BR rel <36 months</td>
<td>14/20 (70%)</td>
<td>9/20 (45%)</td>
<td>18/19 (95%)</td>
</tr>
<tr>
<td>Prior idelalisib</td>
<td>6/9 (67%)</td>
<td>5/9 (56%)</td>
<td>7/9 (78%)</td>
</tr>
</tbody>
</table>

50/50 patients have reached at least Month 14 and have had a bone marrow MRD PB or BM <0.01% CLL cells (10\(^{-4}\)) by flow cytometry.

Using statistical significance (alpha) of 2.5% and statistical power of 95.5%, the A’Hern design requires at least 10 of 50 patients to achieve MRD-eradication in the marrow to reach the pre-defined efficacy threshold for the combined treatment.

Assumptions: Ibr+Ven 30% MRD eradication; Ibr monotherapy <10% MRD eradication.
Treatment Schedule and Stopping Rules

Stopping rules: Duration of therapy is double time to MRD4 negative
1) MRD negative (<0.01%) at M8 stop I+V at M14
2) MRD negative (<0.01%) at M14 or M26 stop I+V at M26
3) MRD positive (≥0.01%) at M26 continue ibrutinib monotherapy
4) MRD positive (≥0.01%) at M26 can continue venetoclax for 12 months (Amendment)
MRD level by time-point (up to Month 26)

Peripheral Blood

Venetoclax

Ibrutinib

Bone Marrow

Venetoclax

Ibrutinib

Date of data lock: 2nd August 2019

*PB & BM MRD negative pts at Month 8 & 14 stop I+V

All 16/17 reaching M26 remain MRD negative to date

MRD4+ patients continue ibrutinib after Month 26

MRD4+ patients to continue venetoclax for 12 months
Undetectable MRD4 (<0.01% and (<0.001%) in PB and BM after 24 months I+V

<table>
<thead>
<tr>
<th>All at Month 26</th>
<th>PB MRD negative</th>
<th>BM MRD negative</th>
<th>PB MRD negative</th>
<th>BM MRD Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>All evaluable patients</td>
<td>32/46 (70%)</td>
<td>23/46 (50%)</td>
<td>21/46 (46%)</td>
<td>13/46 (28%)</td>
</tr>
</tbody>
</table>

50/50 patients have reached at least Month 14 and have had a bone marrow MRD PB or BM <0.01% CLL cells (10^-4) by flow cytometry.
Patients receiving I + V currently at Month 26 (n=28)

Note: This graph represents the data available in the database on 05-Sep-2019. Information on venetoclax pauses is still being collected and so some additional patients may have discontinued/paused venetoclax earlier than has been presented here.
Drug discontinuations at Month 26

Ibrutinib + Venetoclax discontinuations
n = 15

Venetoclax discontinuation
n = 7

Note: This graph represents the data available in the database on 05-Sep-2019. Information on venetoclax pauses is still being collected and so some additional patients may have discontinued/paused venetoclax earlier than has been presented here.
IWCLL Responses
Month 14 (12 months I+V)

<table>
<thead>
<tr>
<th></th>
<th>No.</th>
<th>CR</th>
<th>CRi</th>
<th>PR</th>
<th>ORR</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients</td>
<td>50</td>
<td>23</td>
<td>5</td>
<td>20</td>
<td>48</td>
</tr>
<tr>
<td>FCR/BR relapsed <36 months¹</td>
<td>20</td>
<td>8</td>
<td>2</td>
<td>9</td>
<td>19</td>
</tr>
<tr>
<td>Prior idelalisib²</td>
<td>9</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

1 Percentages calculated over the total number of patients who had FCR/BR and relapsed <36 months and have been assessed for response
2 Percentages calculated over the total number of patients who had Idelalisib before joining the study and have been assessed for response

Date of data lock: 05 September 2019
Toxicity – AEs of interest

<table>
<thead>
<tr>
<th>Toxicity</th>
<th>Grade 1&2, events (patients)</th>
<th>Grade 3, events (patients)</th>
<th>Grade 4, events (patients)</th>
<th>Any Grade, events (patients)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrial fibrillation / flutter</td>
<td>3 (3)</td>
<td>3 (2)</td>
<td>0 (0)</td>
<td>6 (5)</td>
</tr>
<tr>
<td>Blood Blister(s) / Bleeding</td>
<td>12 (8)</td>
<td>2 (2)</td>
<td>0 (0)</td>
<td>14 (10)</td>
</tr>
<tr>
<td>Bruising</td>
<td>37 (20)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>37 (20)</td>
</tr>
<tr>
<td>Esophageal Hemorrhage</td>
<td>1 (1)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Eye Haemorrhage</td>
<td>5 (4)</td>
<td>1 (1)</td>
<td>0 (0)</td>
<td>6 (5)</td>
</tr>
<tr>
<td>Febrile Neutropenia</td>
<td>1 (1)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Haematoma (Retroperitoneal)</td>
<td>0 (0)</td>
<td>1 (1)</td>
<td>0 (0)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Neutrophil Count Decreased</td>
<td>3 (3)</td>
<td>24 (11)</td>
<td>10 (5)</td>
<td>37 (13)</td>
</tr>
<tr>
<td>Pleural Hemorrhage</td>
<td>1 (1)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Retroperitoneal Haematoma*</td>
<td>0 (0)</td>
<td>1 (1)</td>
<td>0 (0)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Tumor Lysis Syndrome</td>
<td>0 (0)</td>
<td>1 (1)</td>
<td>0 (0)</td>
<td>1 (1)</td>
</tr>
</tbody>
</table>

* The two events are thought to be the same event & are being queried

Single case of tumour lysis syndrome (at 200mg dose) – increasing phosphate and creatinine. Managed by delaying venetoclax. Rapidly re-escalated with no further TLS

Recommendation in protocol to give G-CSF to keep the neutrophil count above 1×10^9/L.

Date of data lock: 05 September 2019
Case of disease progression

- Single case of Richter’s transformation (Not biopsy proven)
- Diagnosed 2011. Treated with FCR x 6 to PR in 2013
- Progressive disease 2016. FISH del(13q14), IGHV 97.6% homology to germline VH3-21
- Achieved MRD +ve CR on CLARITY study

Combination of ibrutinib (IBR) with venetoclax (VEN) is well tolerated in relapsed, refractory CLL

- with one case of laboratory TLS
- Adverse event reported mostly grade 1 or 2 - with GI or neutropenia most common AE.

48/50 (96%) patients have an objective response and 28/50 (56%) are in CR or CRi after 12 months combined IBR+VEN

- 20/50 (40%) are MRD negative (<0.01%) in marrow after 12 months IBR+VEN
- 23/46 (50%) and 32/46 (70%) achieve MRD4 (<0.01%) in marrow and peripheral blood respectively after 24 months IBR+VEN.

The Phase III NCRI FLAIR Trial has been modified to include IBR+VEN in front-line CLL

Only one case of disease progression with Richter’s transformation
Nurses and Trial teams at the TAP Centres:

- Chris Fox, Richard Stanley – Nottingham City
- John Gribben, Samir Agrawal - St Barts, London
- Adrian Bloor, Samuel Evans – The Christie, Manchester
- Talha Munir, Morag Griffen, Peter Hillmen- St James’s University Hospital, Leeds
- Francesco Forconi, Andrew Duncombe, Liza Shiner-Clarke-Southampton General Hospital
- Anna Schuh, Stavroura Chante- Churchill Hospital, Oxford
- Piers Patten, Steve Devereux, Maria Liskova-King’s College Hospital, London
- Andrew Pettitt, Jane Tinsley- Royal Liverpool Infirmary
- Donald MacDonald, Esa Saguyan- Hammersmith Hospital, London
- Chris Fegan, Jayne Sumers- University Hospital of Wales, Cardiff
- Alison McCaig, Louise Dinnett- Beatson WOSCC, Glasgow

CRCTU (TAP):
Francesca Yates, Rebecca Bishop, Kristian Brock, Samuel Muñoz-Vicente, Rebecca Boucher Shamyla Siddique, Sonia Fox

HMDS:
Andrew Rawstron, Ruth de Tute, Surita Dalal, Katie Holmes, Nicola McWhirter, Jane Shingles, Cathy Burton

The support and time of participating patients and their families is gratefully acknowledged

This trial is funded by Bloodwise under the Trials Acceleration Programme (TAP). An unrestricted educational grant was provided to support the trial & adjunctive science by Janssen-Cilag and AbbVie Ltd. Ibrutinib provided free of charge by Janssen-Cilag, venetoclax provided free of charge by AbbVie Ltd. The views & opinions expressed therein are those of the authors & do not necessarily reflect those of Janssen-Cilag, AbbVie Ltd, Bloodwise, the NHS, or the Department of Health.